Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Proc Natl Acad Sci U S A ; 120(16): e2221652120, 2023 04 18.
Article in English | MEDLINE | ID: covidwho-2300395

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) possess mutations that confer resistance to neutralizing antibodies within the Spike protein and are associated with breakthrough infection and reinfection. By contrast, less is known about the escape from CD8+ T cell-mediated immunity by VOC. Here, we demonstrated that all SARS-CoV-2 VOCs possess the ability to suppress major histocompatibility complex class I (MHC-I) expression. We identified several viral genes that contribute to the suppression of MHC I expression. Notably, MHC-I upregulation was strongly inhibited after SARS-CoV-2 but not influenza virus infection in vivo. While earlier VOCs possess similar capacity as the ancestral strain to suppress MHC-I, the Omicron subvariants exhibited a greater ability to suppress surface MHC-I expression. We identified a common mutation in the E protein of Omicron that further suppressed MHC-I expression. Collectively, our data suggest that in addition to escaping from neutralizing antibodies, the success of Omicron subvariants to cause breakthrough infection and reinfection may in part be due to its optimized evasion from T cell recognition.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Reinfection , COVID-19/genetics , Antibodies, Neutralizing , Breakthrough Infections , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral
2.
mBio ; 12(4): e0159821, 2021 08 31.
Article in English | MEDLINE | ID: covidwho-1360544

ABSTRACT

The gut microbiota plays a critical role in the induction of adaptive immune responses to influenza virus infection. However, the role of nasal bacteria in the induction of the virus-specific adaptive immunity is less clear. Here, we found that disruption of nasal bacteria by intranasal application of antibiotics before influenza virus infection enhanced the virus-specific antibody response in a MyD88-dependent manner. Similarly, disruption of nasal bacteria by lysozyme enhanced antibody responses to intranasally administered influenza virus hemagglutinin (HA) vaccine in a MyD88-dependent manner, suggesting that intranasal application of antibiotics or lysozyme could release bacterial pathogen-associated molecular patterns (PAMPs) from disrupted nasal bacteria that act as mucosal adjuvants by activating the MyD88 signaling pathway. Since commensal bacteria in the nasal mucosal surface were significantly lower than those in the oral cavity, intranasal administration of HA vaccine alone was insufficient to induce the vaccine-specific antibody response. However, intranasal supplementation of cultured oral bacteria from a healthy human volunteer enhanced antibody responses to an intranasally administered HA vaccine. Finally, we demonstrated that oral bacteria combined with an intranasal vaccine protect from influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Our results reveal the role of nasal bacteria in the induction of the virus-specific adaptive immunity and provide clues for developing better intranasal vaccines. IMPORTANCE Intranasal vaccination induces the nasal IgA antibody which is protective against respiratory viruses, such as influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, understanding how mucosal immune responses are elicited following viral infection is important for developing better vaccines. Here, we focused on the role of nasal commensal bacteria in the induction of immune responses following influenza virus infection. To deplete nasal bacteria, we intranasally administered antibiotics to mice before influenza virus infection and found that antibiotic-induced disruption of nasal bacteria could release bacterial components which stimulate the virus-specific antibody responses. Since commensal bacteria in nasal mucosa were significantly lower than those in the oral cavity, intranasal administration of split virus vaccine alone was insufficient to induce the vaccine-specific antibody response. However, intranasal supplementation of cultured oral bacteria from a healthy human volunteer enhanced antibody responses to the intranasally administered vaccine. Therefore, both integrity and amounts of nasal bacteria may be critical for an effective intranasal vaccine.


Subject(s)
Bacteria/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Influenza Vaccines/immunology , Nasal Mucosa/microbiology , Orthomyxoviridae Infections/prevention & control , Adaptive Immunity/immunology , Adjuvants, Immunologic , Administration, Intranasal , Animals , Antibodies, Viral/immunology , Cell Line , Chlorocebus aethiops , Dogs , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immunity, Mucosal/immunology , Influenza A Virus, H1N1 Subtype/immunology , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Myeloid Differentiation Factor 88/metabolism , Nasal Mucosa/immunology , Pathogen-Associated Molecular Pattern Molecules/immunology , SARS-CoV-2/immunology , Vaccination/methods , Vero Cells
4.
Nat Microbiol ; 5(10): 1299-1305, 2020 10.
Article in English | MEDLINE | ID: covidwho-638387

ABSTRACT

The recent spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exemplifies the critical need for accurate and rapid diagnostic assays to prompt clinical and public health interventions. Currently, several quantitative reverse transcription-PCR (RT-qPCR) assays are being used by clinical, research and public health laboratories. However, it is currently unclear whether results from different tests are comparable. Our goal was to make independent evaluations of primer-probe sets used in four common SARS-CoV-2 diagnostic assays. From our comparisons of RT-qPCR analytical efficiency and sensitivity, we show that all primer-probe sets can be used to detect SARS-CoV-2 at 500 viral RNA copies per reaction. The exception for this is the RdRp-SARSr (Charité) confirmatory primer-probe set which has low sensitivity, probably due to a mismatch to circulating SARS-CoV-2 in the reverse primer. We did not find evidence for background amplification with pre-COVID-19 samples or recent SARS-CoV-2 evolution decreasing sensitivity. Our recommendation for SARS-CoV-2 diagnostic testing is to select an assay with high sensitivity and that is regionally used, to ease comparability between outcomes.


Subject(s)
Betacoronavirus/genetics , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , RNA, Viral/analysis , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/statistics & numerical data , Coronavirus Infections/epidemiology , Genetic Variation , Genome, Viral , Humans , Molecular Probe Techniques/statistics & numerical data , Pandemics , Pneumonia, Viral/epidemiology , RNA/genetics , RNA Probes/genetics , Reverse Transcriptase Polymerase Chain Reaction/statistics & numerical data , SARS-CoV-2 , Sensitivity and Specificity
5.
J Immunol ; 205(2): 307-312, 2020 07 15.
Article in English | MEDLINE | ID: covidwho-542361

ABSTRACT

The inflammatory response to severe acute respiratory syndrome-related coronavirus 2 infection has a direct impact on the clinical outcomes of coronavirus disease 2019 patients. Of the many innate immune pathways that are engaged by severe acute respiratory syndrome-related coronavirus 2, we highlight the importance of the inflammasome pathway. We discuss available pharmaceutical agents that target a critical component of inflammasome activation, signaling leading to cellular pyroptosis, and the downstream cytokines as a promising target for the treatment of severe coronavirus disease 2019-associated diseases.


Subject(s)
Antiviral Agents/pharmacology , Inflammasomes/drug effects , Pyroptosis/drug effects , Animals , Antiviral Agents/immunology , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Humans , Immunity, Innate , Intercellular Signaling Peptides and Proteins/metabolism , Macrophages, Alveolar/pathology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Severe acute respiratory syndrome-related coronavirus/physiology , SARS-CoV-2 , Signal Transduction , COVID-19 Drug Treatment
6.
Annu Rev Virol ; 7(1): 83-101, 2020 09 29.
Article in English | MEDLINE | ID: covidwho-35145

ABSTRACT

The seasonal cycle of respiratory viral diseases has been widely recognized for thousands of years, as annual epidemics of the common cold and influenza disease hit the human population like clockwork in the winter season in temperate regions. Moreover, epidemics caused by viruses such as severe acute respiratory syndrome coronavirus (SARS-CoV) and the newly emerging SARS-CoV-2 occur during the winter months. The mechanisms underlying the seasonal nature of respiratory viral infections have been examined and debated for many years. The two major contributing factors are the changes in environmental parameters and human behavior. Studies have revealed the effect of temperature and humidity on respiratory virus stability and transmission rates. More recent research highlights the importance of the environmental factors, especially temperature and humidity, in modulating host intrinsic, innate, and adaptive immune responses to viral infections in the respiratory tract. Here we review evidence of how outdoor and indoor climates are linked to the seasonality of viral respiratory infections. We further discuss determinants of host response in the seasonality of respiratory viruses by highlighting recent studies in the field.


Subject(s)
Coronavirus Infections/epidemiology , Influenza, Human/epidemiology , Pandemics , Picornaviridae Infections/epidemiology , Pneumonia, Viral/epidemiology , Respiratory Tract Infections/epidemiology , Severe Acute Respiratory Syndrome/epidemiology , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/transmission , Coronavirus Infections/virology , Humans , Humidity , Infectious Disease Incubation Period , Influenza, Human/transmission , Influenza, Human/virology , Orthomyxoviridae/pathogenicity , Orthomyxoviridae/physiology , Picornaviridae Infections/transmission , Picornaviridae Infections/virology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Respiratory Tract Infections/transmission , Respiratory Tract Infections/virology , Rhinovirus/pathogenicity , Rhinovirus/physiology , Severe acute respiratory syndrome-related coronavirus/pathogenicity , Severe acute respiratory syndrome-related coronavirus/physiology , SARS-CoV-2 , Seasons , Severe Acute Respiratory Syndrome/transmission , Severe Acute Respiratory Syndrome/virology , Severity of Illness Index , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL